Copula density


Shanshan Wang
shanshan.wang@uni-due.de
Dec. 3, 2021

Contents

1 Empirical copula density

1.1 Sampling two correlated time series

1.2 Ranking of data

1.3 Estimating a copula density for sampling data

It can be summarized as follows: make a 2d-histogram of the normalized quantiles of sampling data

1.4 Visualizing copula densities

2 Gaussian Copula Density

One assumes that the random variables $x_1$ and $x_2$, normalized to zero mean and unit variance, follow a bivariate normal distribution with a correlation coefficient $c$. The bivariate cumulative normal distribution of $x_1$ and $x_2$ is given by \begin{equation} F(x_1,x_2)=\int\limits_{-\infty}^{x_1}\int\limits_{-\infty}^{x_2}\frac{1}{2\pi \sqrt{1-c^2}}\mathrm{exp}\left(-\frac{y_1^2+y_2^2-2cy_1y_2}{2(1-c^2)} \right) dy_2dy_1 \ . \label{eq4.2.1} \end{equation} Hence, the marginal cumulative normal distribution of $x_1$ is \begin{equation} F_k(x_1)=\int\limits_{-\infty}^{x_1}\frac{1}{\sqrt{2\pi}}\mathrm{exp}\left(-\frac{y_1^2}{2} \right) dy_1 \ , \label{eq4.2.2} \end{equation} and analogously for $F_l(x_2)$. The inverse cumulative distribution function $F_k^{-1}(\cdot)$ is known as the quantile function. We thus have \begin{equation} q_1=F_k(x_1) \quad \mathrm{and}\quad x_1=F_k^{-1}(q_1) \ . \label{eq3.1.3} \end{equation}

The copula density is given as the two-fold derivative \begin{equation} \mathrm{cop}_{kl}(q_1,q_2)=\frac{\partial ^2}{\partial q_1\partial q_2}\mathrm{Cop}_{kl}(q_1,q_2) \ \label{eq3.1.5} \end{equation} with respect to the quantiles $q_1, q_2 \in[0,1]$ . By carrying out the partial derivatives in the above equation, we can obtain an explicit expression of the Gaussian copula density \begin{eqnarray} \nonumber \mathrm{cop}_{c}^G(q_1,q_2)=\frac{1}{\sqrt{1-c^2}}\mathrm{exp}\left(-\frac{c^2F_k^{-1}(q_1)^2+c^2F_l^{-1}(q_2)^2-2cF_k^{-1}(q_1)F_l^{-1}(q_2)}{2(1-c^2)}\right) \ \label{eq4.2.3} \end{eqnarray}


Ref. Shanshan Wang and Thomas Guhr, Local Fluctuations of the Signed Traded Volumes and the Dependencies of Demands: A Copula Analysis, J. Stat. Mech. 2018, 033407 (2018), preprint: arXiv:1706.09240.